Парадигмы программирования

       

Многоликое программирование


Знакомое нам из философии слово "парадигма" имеет в информатике и программировании узко профессиональный смысл, сближающий их с лингвистикой. Парадигма программирования как исходная концептуальная схема постановки проблем и их решения является инструментом грамматического описания фактов, событий, явлений и процессов, возможно, не существующих одновременно, но интуитивно объединяемых в общее понятие.

Каждая парадигма программирования имеет свой круг приверженцев и класс успешно решаемых задач. Приняты разные приоритеты при оценке качества программирования, отличаются инструменты и методы работы и соответственно - стиль мышления и изобразительные средства. Нелинейность развития понятий, зависимость их обобщения от индивидуального опыта и склада ума, чувствительность к моде и внушению позволяют выбору парадигм в системе профессиональной подготовки информатиков влиять на восприимчивость к новому. [[18],[24]]

Ведущая парадигма прикладного программирования на основе императивного управления и процедурно-операторного стиля построения программ получила популярность более пятидесяти лет назад в сфере узкопрофессиональной деятельности специалистов по организации вычислительных и информационных процессов. Последнее десятилетие резко расширило географию информатики, распространив ее на сферу массового общения и досуга. Это меняет критерии оценки информационных систем и предпочтения в выборе средств и методов обработки информации.

Общие парадигмы программирования, сложившиеся в самом начале эры компьютерного программирования, - парадигмы прикладного, теоретического и функционального программирования в том числе, имеют наиболее устойчивый характер.

Прикладное программирование подчинено проблемной направленности, отражающей компьютеризацию информационных и вычислительных процессов численной обработки, исследованных задолго до появления ЭВМ. Именно здесь быстро проявился явный практический результат. Естественно, в таких областях программирование мало отличается от кодирования, для него, как правило, достаточно операторного стиля представления действий. В практике прикладного программирования принято доверять проверенным шаблонам и библиотекам процедур, избегать рискованных экспериментов. Ценится точность и устойчивость научных расчетов. Язык Фортран - ветеран прикладного программирования. Лишь в последнее десятилетие он стал несколько уступать в этой области Паскалю-Си, а на суперкомпьютерах - языкам параллельного программирования, таким как Sisal. [[47], [83], [84], [85]]

Теоретическое программирование придерживается публикационной направленности, нацеленной на сопоставимость результатов научных экспериментов в области программирования и информатики. Программирование пытается выразить свои формальные модели, показать их значимость и фундаментальность. Эти модели унаследовали основные черты родственных математических понятий и утвердились как алгоритмический подход в информатике. [[38]] Стремление к доказательности построений и оценка их эффективности, правдоподобия, правильности, корректности и других формализуемых отношений на схемах и текстах программ послужили основой структурного программирования [[11], [70]] и других методик достижения надежности процесса разработки программ, например, грамотное программирование [[48]]. Стандартные подмножества Алгола и Паскаля, послужившие рабочим материалом для теории программирования, сменились более удобными для экспериментирования аппликативными языками, такими как ML, Miranda, Scheme и другие диалекты Лиспа. Теперь к ним присоединяются подмножества C и Java.

Функциональное программирование сформировалось как дань математической направленности при исследовании и развитии искусственного интеллекта и освоении новых горизонтов в информатике. Абстрактный подход к представлению информации, лаконичный, универсальный стиль построения функций, ясность обстановки исполнения для разных категорий функций, свобода рекурсивных построений, доверие интуиции математика и исследователя, уклонение от бремени преждевременного решения непринципиальных проблем распределения памяти, отказ от необоснованных ограничений на область действия определений - все это увязано Джоном Мак-Карти в идее языка Лисп [[75]]. Продуманность и методическая обоснованность первых реализаций Лиспа позволила быстро накопить опыт решения новых задач, подготовить их для прикладного и теоретического программирования. В настоящее время существуют сотни функциональных языков программирования, ориентированных на разные классы задач и виды технических средств. [[8],[23],[78],[79],[80],[81],[82]]

Основные средства и методы программирования сложились по мере возрастания сложности решаемых задач. Произошло расслоение парадигм программирования в зависимости от глубины и общности проработки технических деталей организации процессов компьютерной обработки информации. Выделились разные стили программирования, наиболее зрелые из которых - низкоуровневое (машинно-ориентированное), системное, декларативно-логическое, оптимизационно-трансформационное, и высокопроизводительное/параллельное программирование.

Низкоуровневое программирование характеризуется аппаратным подходом к организации работы компьютера, нацеленным на доступ к любым возможностям оборудования. В центре внимания - конфигурация оборудования, состояние памяти, команды, передачи управления, очередность событий, исключения и неожиданности, время реакции устройств и успешность реагирования. Ассемблер в качестве предпочтительного изобразительного средства на некоторое время уступил языкам Паскаль и Си даже в области микропрограммирования, но усовершенствование пользовательского интерфейса может восстановить его позиции. [[20],[28],[71],[85]]

Системное программирование долгое время развивалось под прессом сервисных и заказных работ. Свойственный таким работам производственный подход опирается на предпочтение воспроизводимых процессов и стабильных программ, разрабатываемых для многократного использования. Для таких программ оправдана компиляционная схема обработки, статический анализ свойств, автоматизированная оптимизация и контроль. В этой области доминирует императивно-процедурный стиль программирования, являющийся непосредственным обобщением операторного стиля прикладного программирования. Он допускает некоторую стандартизацию и модульное программирование, но обрастает довольно сложными построениями, спецификациями, методами тестирования, средствами интеграции программ и т.п. Жесткость требований к эффективности и надежности удовлетворяется разработкой профессионального инструментария, использующего сложные ассоциативно семантические эвристики наряду с методами синтаксически-управляемого конструирования и генерации программ. Бесспорный потенциал такого инструментария на практике ограничен трудоемкостью освоения - возникает квалификационный ценз [[58]].

Высокопроизводительное программирование нацелено на достижение предельно возможных характеристик при решении особо важных задач. Естественный резерв производительности компьютеров - параллельные процессы. Их организация требует детального учета временных отношений и неимперативного стиля управления действиями. Суперкомпьютеры, поддерживающие высокопроизводительные вычисления, потребовали особой техники системного программирования. Графово-сетевой подход к представлению систем и процессов для параллельных архитектур получил выражение в специализированных языках параллельного программирования и суперкомпиляторах, приспособленных для отображения абстрактной иерархии процессов уровня задач на конкретную пространственную структуру процессоров реального оборудования [[10],[15],[84]].

Декларативное (логическое) программирование возникло как упрощение функционального программирования для математиков и лингвистов, решающих задачи символьной обработки. Особенно привлекательна возможность в качестве понятийной основы использовать недетерминизм, освобождающий от преждевременных упорядочений при программировании обработки формул. Продукционный стиль порождения процессов с возвратами обладает достаточной естественностью для лингвистического подхода к уточнению формализованных знаний экспертами, снижает стартовый барьер внедрения информационных систем. [[52]]

Трансформационное программирование методологически объединило технику оптимизации программ, макрогенерации и частичных вычислений. Центральное понятие в этой области - эквивалентность информации. Она проявляется в определении преобразований программ и процессов, в поиске критериев применимости преобразований, в выборе стратегии их использования. Смешанные вычисления, отложенные действия, "ленивое" программирование, задержанные процессы и т.п. используются как методы повышения эффективности информационной обработки при некоторых дополнительно выявляемых условиях. [[23],[39]]

Дальнейшее развитие парадигм программирования отражает изменение круга лиц, заинтересованных в применении информационных систем. Формирование экстенсивных подходов к программированию - естественная реакция на радикальное улучшение эксплуатационных характеристик оборудования и компьютерных сетей. Происходит переход вычислительных средств из класса технических инструментов в класс бытовых приборов. Появилась почва для обновления подходов к программированию, а также возможность реабилитации старых идей, слабо развивавшихся из-за низкой технологичности и производительности ЭВМ. Представляет интерес развитие исследовательского, эволюционного, когнитивного и адаптационного подходов к программированию, создающих перспективу рационального освоения реальных информационных ресурсов и компьютерного потенциала. [[14],[17]]

Исследовательский подход с учебно-игровым стилем профессионального, обучающего и любительского программирования может дать импульс изобретательности в совершенствовании технологии программирования, не справившейся с кризисными явлениями на прежней элементной базе. [[37],[43]]

Эволюционный подход с мобильным стилем уточнения программ достаточно явно просматривается в концепции объектно-ориентированного программирования, постепенно перерастающего в субъектно-ориентированное и даже эго-ориентированное программирование. Повторное использование определений и наследование свойств объектов могут удлинить жизненный цикл отлаживаемых информационных обстановок, повысить надежность их функционирования и простоту применения. Когнитивный подход с интероперабельным стилем визуально-интерфейсной разработки открытых систем и использование новых аудио-видео средств и нестандартных устройств открывают пути активизации восприятия сложной информации и упрощения ее адекватной обработки. [[41],[82]]

Адаптационный подход с эргономичным стилем индивидуализируемого конструирования персонифицированных информационных систем предоставляет информатикам возможность грамотного программирования, организации и обеспечения технологических процессов реального времени, чувствительных к человеческому фактору и переносу систем [[22],[62]].

Стабилизирующееся в наши дни доминирование одной архитектурной линии, стандартного интерфейса, типовой технологии программирования и т.д. чревато потерей маневренности при обновлении информационных технологий. Особенно уязвимы в этом отношении люди, привыкшие прочно усваивать все раз и навсегда. При изучении языков программирования подобные проблемы обходят за счет одновременного преподавания различных языков программирования или предварительного изложения основы, задающей грамматическую структуру для обобщения понятий, изменяемость которых трудно улавливается на упрощенных учебных примерах. Именно такую основу дает изучение функционального программирования тем, что оно нацелено на изложение и анализ парадигм, сложившихся в практике программирования в разных областях деятельности с различным уровнем квалификации специалистов, что может быть полезно как концептуальная основа при изучении новых явлений в информатике.

Парадигма программирования является инструментом формирования профессионального поведения. Информатика прошла путь от профессионального программирования высококвалифицированной элиты технических специалистов и научных работников до свободного времяпрепровождения активной части цивилизованного общества. Освоение информационных систем через понимание с целью компетентных действий и ответственного применения техники сменилось интуитивными навыками хаотичного воздействия на информационную среду со скромной надеждой на везение, без претензий на знание. Обслуживание центров коллективного пользования, профессиональная поддержка целостности информации и подготовки данных почти полностью отступили перед самообслуживанием персональных компьютеров, независимым функционированием сетей и разнородных серверов со взаимодействием различных коммуникаций.

Противопоставление разрабатываемых программ, обрабатываемых данных и управления заданиями уступает представлению об интерфейсах, приспособленных для участия в информационных потоках подобно навигации. Прежние критерии качества: скорость, экономия памяти и надежность обработки информации - все больше заслоняются игровой привлекательностью и широтой доступа к мировым информационным ресурсам. Замкнутые программные комплексы с известными гарантиями качества и надежности форсированно вытесняются открытыми информационными комплектами с непредсказуемым развитием состава, способов хранения и обработки информации.

Многие важные для практики программирования понятия, такие как события, исключения и ошибки, потенциал, иерархия и ортогональность построений, экстраполяция и точки роста программ, измерение качества и т.д. не достигли достаточного уровня абстрагирования и формализации. Это позволяет прогнозировать развитие парадигм программирования и выбирать учебный материал на перспективу компонентного программирования (COM/DCOM, Corba, UML и др.). Если традиционные средства и методы выделения многократно используемых компонентов подчинялись критерию модульности, понимаемой как оптимальный выбор минимального сопряжения при максимальной функциональности, то современная элементная база допускает оперирование многоконтактными узлами, выполняющими простые операции. [[5],[9],[21],[25],[76],[86]]

Эти симптомы обновления парадигмы программирования определяют направление изменений, происходящих в системе базовых понятий, в концепции информации и информатики. Тенденция использования интерпретаторов (точнее неполной компиляции) вместо компиляторов, анонсированная в концепции Java в сравнении с Си, и соблазн объектно-ориентированного программирования на фоне общепринятого императивно-процедурного стиля программирования можно рассматривать как неявное движение к функциональному стилю. Моделирующая сила функциональных формул достаточна для полноценного представления разных парадигм, что позволяет на их основе экстраполировать приобретение практических навыков организации информационных процессов на будущее.

В середине прошлого (20-го) века термин "программирование" не подразумевал связи с компьютером. Можно было увидеть название книги "Программирование для ЭВМ". Теперь по умолчанию этот термин означает организацию процессов на компьютерах и компьютерных сетях. [[77]]

Программирование как наука существенно отличается от математики и физики с точки зрения оценки результатов. Уровень результатов, полученных физиками и математиками, обычно оценивают специалисты близкой или более высокой квалификации. В оценке результатов программирования большую роль играет оценка пользователя, не претендующего на программистские познания. Поэтому, в отличие от обычных наук, специалисты в области программирования частично выполняют функцию переводчика своих профессиональных терминов в понятия пользователя.

Программирование обладает своим специфичным методом установления достоверности результатов - это компьютерный эксперимент. Если в математике достоверность сводится к доказательным построениям, понятным лишь специалистам, а в физике - к воспроизводимому лабораторному эксперименту, требющему специального оснащения, то компьютерный эксперимент может быть доступен широкой публике.

Еще одна особенность программирования обусловлена его зависимостью от быстро развивающейся электронной технологии. По этой причине программистские знания - это сочетание классики и моды. Конкретные знания модных новинок устаревают, поэтому для быстрого обновления знаний и навыков нужен классический фундамент, прямое назначение которого не вполне очевидно пользователям и новичкам. [[6],[7],[26]]

Программирование использует в качестве понятийной базы математический аппарат (теория множеств, теория чисел, алгебра, логика, теория алгоритмов и рекурсивных функций, теория графов и др.)

Критерии качества программы весьма разнообразны. Их значимость по существу зависит от класса задач и условий применения программ:

  • результативность
  • надежность
  • устойчивость
  • автоматизируемость
  • эффективное использование ресурсов (время, память, устройства, информация, люди)
  • удобство разработки и применения
  • наглядность текста программы
  • наблюдаемость процесса работы программы
  • диагностика происходящего

Упорядочение критериев нередко претерпевает изменения по мере развития области применения программы, роста квалификацией пользователей, модернизации оборудования, информационных технологий и программотехники. Вытекающее из этого непрерывное развитие пространства, в котором решается задача, вводит дополнительные требования к стилю программирования информационных систем:

  • гибкость
  • модифицируемость
  • улучшаемость

Программирование как наука, искусство и технология исследует и творчески развивает процесс создания и применения программ, определяет средства и методы конструирования программ, с разнообразием которых нам предстоит познакомиться в дальнейших лекциях, посвященных анализу ряда основных парадигм программирования.

Имеются явные сложности классификации языков программирования и определения их принадлежности конкретной парадигме программирования. В данном курсе парадигма программирования характеризуется взаимодействием основных семантических систем, таких как обработка данных, хранение данных и управление обработкой данных. При таком подходе выделятся три категории парадигм:

  • низкоуровневое программирование;
  • программирование на языках высокого уровня;
  • подготовка программ на базе языков сверх высокого уровня.

Низкоуровневое программирование связано со структурами данных, обусловленными архитектурой и оборудованием. При хранении данных и программ используется глобальная память и автоматная модель управления обработкой данных. [[1],[3],[4],[13],[29],[32],[56],[63],[72]]

Программирование на языках высокого уровня приспособлено к заданию структур данных, отражающих природу решаемых задач. Используется иерархия областей видимости структур данных и процедур их обработки, подчиненная структурно-логической модели управления, допускающей сходимость процесса отладки программ. [[34],[35],[40],[51],[59],[73],[87]]

Подготовка программ на базе языков сверх высокого уровня нацелено на представление регулярных, эффективно реализуемых структур данных, при обработке которых возможны преобразования представления данных и программ, использование подобий и доказательных построений, гарантирующих высокую производительность вычислений и надежность процесса разработки программ. [[16],[49],[50],[57],[84],[86]]

В последней лекции приведена сводка материалов Интернет-Университета информационных технологий, дополняющих настоящий курс.


Содержание раздела